SIRIUS

Hier geht es zum Geschenk!

Sirius A ist ein Hauptreihenstern vom Spektraltyp A1 mit der Leuchtkraftklasse V[2] und dem Zusatz m für „metallreich“.[7] Seine Masse ist etwa 2,1-mal so groß wie die der Sonne.[13] Interferometrische Messungen zeigen, dass sein Durchmesser das 1,7fache des Sonnendurchmessers beträgt.[12] Sirius’ Leuchtkraft ist 25-mal so groß wie die der Sonne.[12] Die Oberflächentemperatur beträgt knapp 10.000 K (Sonne: 5.778 K).[12]

Die durch die Rotation des Sterns verursachte Dopplerverbreiterung der Spektrallinien erlaubt es, eine Untergrenze für die Rotationsgeschwindigkeit am Äquator zu bestimmen. Sie liegt bei 16 km/s,[14] woraus eine Rotationsdauer von etwa 5,5 Tagen oder weniger folgt.[10] Diese niedrige Geschwindigkeit lässt keine messbare Abplattung der Pole erwarten.[7] Im Gegensatz dazu rotiert die ähnlich große Wega mit 274 km/s sehr viel schneller, was eine erhebliche Ausbuchtung am Äquator zur Folge hat.[15]

Das Lichtspektrum von Sirius A zeigt ausgeprägte metallische Linien. Dies deutet auf eine Anreicherung von schwereren Elementen als Helium, wie etwa das spektroskopisch besonders leicht beobachtbare Eisen, hin.[7][13] Das Verhältnis von Eisen zu Wasserstoff ist in der Atmosphäre etwa dreimal so groß wie in der Atmosphäre der Sonne (entsprechend einer Metallizität von [Fe/H] = 0,5[12]). Es wird vermutet, dass der in der Sternatmosphäre beobachtete hohe Anteil von schwereren Elementen nicht repräsentativ für das gesamte Sterninnere ist, sondern durch Anreicherung der schwereren Elemente auf der dünnen äußeren Konvektionszone des Sterns zustande kommt.[7]

Die Gas- und Staubwolke, aus der Sirius A gemeinsam mit Sirius B entstand, hatte laut gängigen Sternmodellen nach etwa 4,2 Millionen Jahren das Stadium erreicht, in dem die Energiegewinnung durch die langsam anlaufende Kernfusion die Energiefreisetzung infolge Kontraktion um die Hälfte übertraf. Nach zehn Millionen Jahren schließlich stammte die gesamte erzeugte Energie aus der Kernfusion. Sirius A ist seither ein gewöhnlicher, Wasserstoff verbrennender Hauptreihenstern. Er gewinnt bei einer Kerntemperatur von etwa 22 Millionen Kelvin seine Energie hauptsächlich über den Bethe-Weizsäcker-Zyklus. Wegen der starken Temperaturabhängigkeit dieses Fusionsmechanismus wird die erzeugte Energie im Kern größtenteils durch Konvektion transportiert. Außerhalb des Kerns geschieht der Energietransport durch Strahlung, lediglich knapp unterhalb der Sternoberfläche setzt wieder konvektiver Transport ein (siehe auch Sternaufbau).[7]

Sirius A wird seinen Vorrat an Wasserstoff innerhalb der nächsten knappen Jahrmilliarde verbrauchen, danach den Zustand eines Roten Riesen erreichen und schließlich als Weißer Zwerg von etwa 0,6 Sonnenmassen enden.[16]